A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain.

نویسندگان

  • Maksim Kouza
  • Chin-Kun Hu
  • Mai Suan Li
  • Andrzej Kolinski
چکیده

We discuss the use of a structure based Cα-Go model and Langevin dynamics to study in detail the mechanical properties and unfolding pathway of the titin I27 domain. We show that a simple Go-model does detect correctly the origin of the mechanical stability of this domain. The unfolding free energy landscape parameters x(u) and ΔG(‡), extracted from dependencies of unfolding forces on pulling speeds, are found to agree reasonably well with experiments. We predict that above v = 10(4) nm/s the additional force-induced intermediate state is populated at an end-to-end extension of about 75 Å. The force-induced switch in the unfolding pathway occurs at the critical pulling speed v(crit) ≈ 10(6)-10(7) nm/s. We argue that this critical pulling speed is an upper limit of the interval where Bell's theory works. However, our results suggest that the Go-model fails to reproduce the experimentally observed mechanical unfolding pathway properly, yielding an incomplete picture of the free energy landscape. Surprisingly, the experimentally observed intermediate state with the A strand detached is not populated in Go-model simulations over a wide range of pulling speeds. The discrepancy between simulation and experiment is clearly seen from the early stage of the unfolding process which shows the limitation of the Go model in reproducing unfolding pathways and deciphering the complete picture of the free energy landscape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steered molecular dynamics studies of titin I1 domain unfolding.

The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band mod...

متن کامل

Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.

The mechanical unfolding of an immunoglobulin domain from the human muscle protein titin (TI I27) has been shown to proceed via a metastable intermediate in which the A-strand is detached. The structure and properties of this intermediate are characterised in this study. A conservative destabilising mutation in the A-strand has no effect on the unfolding force, nor the dependence of the unfoldi...

متن کامل

Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.

The mechanical stability of force-bearing proteins is crucial for their functions. However, slow transition rates of complex protein domains have made it challenging to investigate their equilibrium force-dependent structural transitions. Using ultra stable magnetic tweezers, we report the first equilibrium single-molecule force manipulation study of the classic titin I27 immunoglobulin domain....

متن کامل

A "force buffer" protecting immunoglobulin titin.

Titin filaments control structural and functional properties of the sarcomere. They connect the M-line and Z-disc components of the sarcomere which are approximately 1 mm apart. The sarcomere consists of four regions: the M-line, A-band, Iband, and Z-line. Most of titin s extendibility is credited to the I-band which contains immunoglobulins (Igs) flanking N2 and PEVK regions. The N2 and PEVK r...

متن کامل

Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy.

The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 6  شماره 

صفحات  -

تاریخ انتشار 2013